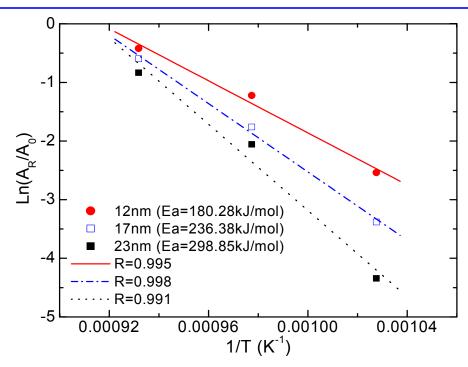

Observation of the Size Effect on Phase Transformation of TiO₂ Nanoparticles

- ❖ In order to design and control TiO₂ phase types and concentrations for more efficient photocatalysis. The phase transformation of TiO₂ nanoparticles with different sizes (12 nm, 17 nm, and 23 nm) was studied using XRD and TEM.
- ❖ The XRD results and the calculated activation energies are used to show the size dependence of phase transformation.

X-ray Diffraction Study of TiO₂ Phase Transformation

- ■XRD patterns from as-deposited samples and samples annealed at 700, 750, and 800 °C.
- ■The phase compositions were calculated based on formula

$$W_R = \frac{A_R}{A_0} = \frac{A_R}{0.884A_A + A_R}$$


Particle sizes were calculated.

(*)A. A. Gribb and J. F. Banfield, Am. Mineral. 82, 717 (1997).

Samples	$A_{R(110)}/(A_{R(110)} + 0.884A_{A(101)}) (\pm 0.03)$			
	As-deposited	700°C	750°C	800°C
12 nm	0	0.079	0.295	0.658
17 nm	0	0.034	0.172	0.551
23 nm	0	0.013	0.128	0.435

■Rutile and anatase relative phase concentrations calculated from XRD as functions of size and temperature.

- $A_R = A_0 Exp(-E_a/KT)$, $A_0 = 0.884A_A + A_R$ E_a is anatase to rutile transformation activation energy.
- The activation energy decreases with the particle size and 12-nm sample has the lowest activation energy of 180.28 kJ/mol.
- (*) H. Zhang and J. F. Banfield, Am. Mineral. **84**, 528 (1999).

Activation Energy Calculation

